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A physically based constitutive law for the deformation of polymers is applied to the stretching of 
polypropylene to large deformations at elevated temperatures. In this deformation regime, which is applicable 
to many forming processes, necking of the material is a persistent feature. The theory is elastic in nature, but 
includes the necking phenomenon as an inherent property. It is incorporated into a commercial finite element 
code and used to model a number of different experimental modes of deformation, both uniaxial and biaxial. 
Comparison is made with the experiments and it is found that both strains and forces are represented 
realistically, even though the true nature of the material is viscoelastic. Some of the discrepancies in the 
model predictions are traceable to its elastic nature. © 1997 Elsevier Science Ltd. 
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INTRODUCTION 

In a variety of industrial forming processes, polymers are 
deformed in the solid phase to large strains at elevated 
temperatures. In some cases the process involves a stage 
of inhomogeneous deformation ('necking'). With this in 
mind, we demonstrated in a previous publication t an 
elastic constitutive law, for which the development of 
necking is an inherent feature. 

In this paper we discuss the quantitative application of 
this material model to the stretching of polypropylene in 
various modes at 150°C. The procedures required to fix 
the values of the various parameters are demonstrated. 
These include the particular experimental techniques 
necessary to extract stress-strain information from 
inhomogeneously deforming specimens. Finite element 
modelling is used to analyse the complex deformation 
fields and associated drawing forces generated when 
specimens are stretched in both uniaxial and biaxial 
modes. By this means we evaluate the effectiveness of the 
theory. Because we know from a wide range of other 
experimental evidence that polypropylene is a viscoelas- 
tic material, there must be limitations to the general 
effectiveness of the analysis used. However, an elastic 
analysis has advantages from the point of view of 
computing. The realistic features of the model in its 
present form suggest that it could form the basis of a more 
comprehensive viscoelastic model. 

The polymer is below its melting point at the 
temperature of testing and from a structural viewpoint 
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consists of crystalline and amorphous regions. At a 
molecular level it is, therefore, not homogeneous. In spite 
of this it will be shown that the constitutive law used, 
which represents a single continuum, does provide a first- 
order description of the deformation behaviour. It is 
recognized that a more sophisticated model, taking into 
account differences in behaviour between crystalline and 
amorphous material, is likely to be more appropriate and 
provide a better quantitative description, and present 
efforts are directed towards this objective. However, in 
view of its simplicity of implementation in currently 
available finite element software, we have proceeded with 
the assumption of a homogeneous structure and will 
show that this provides an adequate description of  the 
main features of the deformation behaviour. 

THEORY AND IMPLEMENTATION 

The development of the theory was given fully pre- 
1 viously,  and will only be summarized here. It is based on 

the model of Ball et aLL This is a hyperelastic model in 
which the change in strain energy density W as a result of 
a deformation, defined by principal extension ratios A1, 
A2 and A3, is 

kr- Uo ;-2a, + Us +'iV +ln(i 
i=1 i=l 

(1) 
where W is the energy per unit volume, k is Boltzmann's 
constant, T is the absolute temperature, Nc and Ns are, 
respectively, the number per unit volume of crosslinks 
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and sliplinks, and ?7 is a parameter defining the extent of 
the motion of the sliplinks. 77 is non-negative, with the 
value zero corresponding to a state of fixed sliplinks, for 
which the theory reduces to the Gaussian chain model. 
For convenience we rewrite equation (1) as 

1 3 3 
W = ~ N * Z A ~ + N s Z b ( A i )  (2) 

i=l i=1 

where Ng = k T N  c and N* = kTNs.The incompressibility 
condition A1A2)~ 3 = 1 is assumed to apply. Given this 
constraint, equation (1) can be rewritten in terms of the 
invariants: 

2 2  2 2  2 2  I 1 = A~ q'-A 2q-A 2, /2 = AIA2-[-AzA3-~-A3A1 

as 

1 , 1 , [_(1 + 77)(11 + 2r/h + 3?? 2) 
W = ~ N  c]1 + ~ N s  1 +T/] 1 +772/2 +773 k 

+In(1 +~/I1 +?72/2 +??3)] (3) 

The constitutive equations for the stresses crii(i = 
1,2, 3) are given by 

= A, OW 
O'ii "--~ii P (4) 

where the incompressibility assumption has led to the 
appearance of a hydrostatic pressure p. Substituting 
equation (2) into equation (4) gives 

O'ii = g c ) l  2 q- N s A i b t ( A i )  - p (5) 

Following some initial studies on the application of 
this model to stretching of polymer sheets 3, a modifica- 
tion was introduced 1 in the form of the addition of strain 
dependence in N2 to this constitutive equation. A 
decrease in N2 with increasing strain had the effect of 
allowing the onset of necking, corresponding to a 
minimum in the nominal stress-stretch curve, to occur 
at lower strains, in closer agreement to experimental 
observation. Ns was assumed to depend on the first 
invariant only, so the theory took the form: 

aii = Ng.X~ + Ns(Ii  )Aib'(Ai) - p (6) 

N~ was assumed to vary between an initial value Ns0 and 
an ultimate value N ~ ,  according to the relation: 

Ns(i1) _ U;*o - U;*~ + N~*~ (7) 
(11 - 2 )  3 

where the exponent 3 controls the rate of decay of Ns. 
Once the variation in N~ has been introduced, the 

theory embodied in equations (6) and (7) remains elastic 
in the Cauchy sense (stress depends only on the current 
strain), but is no longer hyperelastic, since the strain 
energy depends on the deformation path and a strain 
energy function does not exist. This is discussed fully in 
ref. 1. In spite of this the model has been implemented 
using the 'hyperelastic' facility in the finite element 
package ABAQUS. This is possible because the 
ABAQUS solution uses a constitutive equation depend- 
ing on the derivatives OW/OII and OW/O/2. The 
required quantities were obtained by differentiating 
equation (3) (assuming Ns to be constant) and then 
replacing the constant N~ with the function of equation 

(7). These and other higher order derivatives required for 
the solution were generated as blocks of Fortran using a 
symbolic algebra package. 

The finite element models used are of three experi- 
mental specimens to be discussed below. The meshes are 
illustrated in Figures 6, 13 and 16. Four-noded bilinear 
quadrilateral elements are used throughout. For the 
models of sheet specimens of Figures 13 and 16, plane 
stress elements are used, while for the axisymmetric 
model of Figure 6 hybrid elements were required to 
accommodate the assumption of incompressibility in the 
constitutive relation. The models of Figures 6 and 13 are 
of uniaxial specimens, and the highest density of 
elements is in the gauge length where the necks form. 
The effect of changing the number of elements in this 
region was explored to establish convergence, and the 
present models were accepted on the basis that halving 
the number of these elements, by doubling their heights, 
resulted in essentially the same deformation fields and 
boundary forces. A similar approach, of studying the 
effect of changes in the element density in high strain 
regions, was adopted for the model of Figure 16. Here, in 
the high strain regions as discernible from the deformed 
model, the number of elements per unit length in the 
stretching (horizontal) direction was varied and conver- 
gence of the present model was established. 

EXPERIMENTAL 

The polypropylene copolymer material was manufac- 
tured by Tiszai Vegyi Kombinat, Hungary, and desig- 
nated as ~rade K-899 and is the same as that used 
previously'. It was obtained both as granules and in 
commercial sheet form. Molecular weights as obtained 
b_y gel permeation chromatography were weight average 
Mw = 452 600 and number average )l~t n -- 95 760. All the 
tests were carried out in air-blown ovens at 150°C. 

For one class of experiment, specimens of cylindrical 
cross section were stretched uniaxially while being held in 
split collet grips. The dumb-bell geometries were 
machined from a solid billet of material. The billet was 
formed from the granules by filling a mould with melt 
from a single-screw extruder at an exit temperature of 
230°C. The cylindrical mould was filled from below, with 
a weight resting on top of the extrudate, and then 
transferred to an oven at 180°C where it was stored for 
6 h before being slowly cooled. Specimen geometries are 
illustrated in Figure la. 

A second class of experiment also involved uniaxial 
stretching, but on plane specimens cut from the sheets. 
The geometry is illustrated in Figure lb. Both these and 
the cylindrical specimens described above were stretched 
using an Instron testing machine at constant speeds 
corresponding to initial octahedral shear strain rates of 
0.005, 0.01 and 0.02 s -l ,  respectively. 

All the uniaxial tests produced necking of the speci- 
mens, and so the measurement of strain was a non-trivial 
problem. Lines were marked on the specimen surfaces 
and they were observed through the glass oven door 
throughout the test. Strains at the surface were deduced 
from digitized images using the image analysis technique 
described previously 4. For each test, 16 images were 
captured, equally spaced in time. 

The material at this temperature is viscoelastic, and yet 
we are to make use of an elastic constitutive law. This 
means that we are to neglect the rate dependence of the 
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Figure 1 Geometries of  uniaxial specimens: (a) cylindrical and (b) 
plane (1.6mm thickness), where the thick horizontal lines define the 
extent o f  the gripping area. Dimensions in mm 
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Figure 2 Experimental nominal stress-extension curves, for cylind- 
rical specimens, showing the effect of  testing rate 

material. To give an initial assessment of the significance 
of this, we compare the load-extension curves for 
experiments at different rates. Once the specimen has 
begun to neck, the strain rate is not constant throughout 
and is not simply related to the testing speed. However, 
for extension ratios less than that corresponding to the 
force maximum, the specimens are homogeneous and the 
strain rates are proportional to the testing speeds. The 
comparison is made in Figure 2 for speeds differing by a 
factor of four. The heights of the peaks in nominal stress 
differ by 5%, which is consistent with the rate depen- 
dence of this material when stretched in the form of thin 
sheets at 150°C ~. The results suggest that data from 
experiments can be used successfully to model other 
processes without taking account strain rate, provided 
that the experiments and processes are conducted at 
comparable speeds. 

More complex stretching experiments were performed 
in which forces were applied to sheet specimens along 
two perpendicular axes. The boundary conditions were 
such as to correspond with planar extension or stretching 
at constant width, with the added complication of 
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Z 

D8 \ / D3 
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Figure 3 Specimen for planar extension experiments. Inner circular 
region is machined to approximately half the thickness of  the original 
(1.6 mm thick) sheet. Gripped areas D6, C3 and D5 and D1, CI and D2 
separate as the specimen is extended in the z direction 

inhomogeneous deformation. The specimen geometry 
is illustrated in Figure 3. There is a circular area which 
has been reduced in thickness to approximately half that 
of the original sheet; this is to ensure that deformation 
takes place within the interior of the specimen. Without 
this feature, specimens neck and extend around the grip 
area, leaving the specimen interior largely undeformed. 
The specimen is stretched in a biaxial testing machine 
manufactured in-house (the same one as in ref. 3) by 
being gripped at the tabs C1-C4 and D1-D8, which are 
separated by slits. Stretching is in the z direction, with 
lateral deformation in the x direction being restrained. 
Applied forces in both z and x directions are recorded. 
On extension, necking takes place, with necks initiating 
at the ends of the slits between separating tabs (i.e. 
between D7 and D6, D6 and C3, etc.). Photographs of 
undeformed and deformed specimens are shown in 
Figure 4. As with the uniaxial tests, the specimens were 
held in an air-blown oven at a temperature of 150°C, 
Initial shear strain rates were 0.01 s -l. Deformations 
were measured by means of a mesh printed on the 
specimen surface, with direct measurements of it being 
made on the deformed specimen after testing. 

RESULTS AND DISCUSSION 

Derivation of parameter values 
We require values of the parameters N~, Ns0, N~'~, r/ 

and /3. To obtain these we use information derived 
experimentally on both the deformed shapes of the 
specimens and the drawing forces. Traditionally, the 
uniaxial stress-strain curve is the source of data for 
fixing mechanical parameters. However, for a theory of 
this level of complexity, this special deformation 
provides insufficient information, and in particular fails 
to yield a unique value for ~7. There is the added problem 
that, while the uniaxial experiment can provide some of 
the information we require, truly uniaxial data are 
difficult to obtain from a necking specimen as a result of 
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Figure 4 Photographs of planar extension specimens in (A) undeformed and (B) deformed states 
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the presence of shear stresses in the neck. An iterative 
process is therefore used, in which parameter values are 
estimated and then both applied forces and the shapes 
predicted by finite element models are compared with 
experiment. The forces, both axial and lateral, which are 
observed in the planar extension experiments are 
particularly crucial in fixing the value of r~. 

Uniaxial data 
For incompressible material, the nominal stress is 

given by 

O'~3 = O'33//~ 3 (8) 

where it is assumed that stretching is uniaxial along the 3 
direction. Such a deformation is defined by principal 
extension ratios (A31/2, A31/2, A3). Figure 5 shows a curve 
of nominal stress against extension ratio for uniaxial 
stretching. This curve is typical of that of a necking 
polymer, with principal features the initial maximum, 
corresponding to the onset of necking, and the minimum 
at the higher extension which corresponds to the natural 
draw ratio. A realistic set of parameters must model the 
positions of these two features adequately. The basic 
phenomenology linking the stress-strain and the necking 
behaviour is well known 5. The cylindrical tensile speci- 
mens come closest to pure uniaxial deformation, since 
the symmetry ensures that A1 = A2. However, only in 
regions of the specimen where there is no shear, such as 
at the centre of the neck, is the deformation truly 
uniaxial. The strains measured by image analysis cannot 
therefore be simply interpreted to define a uniaxial 
stress-strain curve. If we are able to observe the centre of 
the neck, then the strains there do indeed allow this 
simple interpretation, but in general the surface strains 
provide information which should be interpreted less 
directly, such as by comparison with those predicted by a 
finite element analysis. 

Such a model is shown in Figure 6. The axisymmetric 
model of half the specimen is made with four-noded 
elements using the package ABAQUS. The values of the 
modified Ball et al. model parameters are the set 
designated A in Table 1. These were arrived at by a 
process of trial and error. The ratios Nc/Nso and Nc/Nso~ 
are most important in controlling the shape of the stress- 
strain curves and the shape of the deformed body, with 
their absolute values fixed by the drawing forces. Dis- 
placement boundary conditions were imposed in the 
form of a restraint in the vertical (z) direction of a 
surface node in the shoulder region, to simulate the 
action of the split collet grip, and vertical displacement 
of the top horizontal boundary. The strains at the 
surface of the model are compared with those observed 
for a cylindrical specimen stretched at 0.35mms -l to a 
total deformation of 55 mm (an overall extension ratio of 
2.1 for the gauge length) in Figure 7; the corresponding 
nominal stress-extension curve is shown in Figure 2. 
Axial extension ratios are compared; given the axisym- 
metry and the incompressibility, these extension ratios 
define the shape uniquely. The chosen parameters give 
a realistic representation of the neck shape. The agree- 
ment at the high strains, where the natural draw ratio 
of the material is approached, suggests that the natural 
draw ratio of the model material matches that of the 
real material. Observations at the other higher testing 
speeds produced strain distributions which were 
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Figure 5 Typical nominal stress-strain curve for a necking polymer, 
with the maximum corresponding to the onset of necking and the 
minimum to the natural draw ratio 
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Figure 6 Axisymmetric finite element model of half of the cylindrical 
specimen, with the undeformed model on the left and the deformed 
model on the right 

Table 1 

Parameter N~ N~0 N~oo 
set (MPa) (MPa) (MPa) fl fl 

A 0.33 6.64 2.13 0.2 2.0 
B 0.26 11.22 6.15 0.6 1.5 

indistinguishable from that shown here. This implies 
that the stress is separable as a product of functions of 
strain and of strain rate. 

Direct comparison of experimental and theoretical 
stress-strain curves has also proved possible. For the 
experimental data, observations at the neck centre were 
made for the large strain data. The theoretical curve is 
obtained from equation (6). For plane problems in the 
1-3 plane, p can be eliminated using the condition 
cr22 = 0 to give 

a33=N~(A~ -A~)+N~(I,)(A3b'(A3) -A2b'(A2) ) (9) 
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Figure 7 Comparison of  measured and modelled surface strains for 
the cylindrical specimen 
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Figure 8 Experimental nominal stress-strain curve obtained from the 
cylindrical specimen by image analysis, compared with the theoretical 
curve corresponding to parameter set A of  Table 1 

For uniaxial stretching along the 3 axis, the incom- 
pressibility condition ensures that A2 = A31/2 and the 
use of equation (8) gives the nominal stress: 

o-~3 = N c ( A  3 --  A3 2) + N s ( I I ) ( f f ( A 3 )  --  A 3 3 / 2 f f ( A 3 1 / 2 ) )  

(10) 

which is plotted in Figure 8 using the values of parameter 
set A of Table 1. The peak in the nominal stress occurs at 
a higher extension ratio than that observed experimen- 
tally; this is a fundamental limitation of the theory. The 
experimental curve was obtained using the cylindrical 
specimen and stretching at a constant speed, correspond- 
ing to an initial shear rate of 0.01 s -l. 

Planar extension data 

A comparison of planar extension and uniaxial data 
shows that uniaxial data are insufficient to define the 
parameters accurately. We demonstrate this using the 
parameter sets A and B as defined in Table 1. Set A was 
chosen on the basis described above of fitting the Ball 
et al. model 2 to uniaxial data, and was shown to produce 
realistic results for both uniaxial and planar extension 
behaviour. Set B gives non-physical behaviour, and is 
used to demonstrate that parameters which provide good 
fits to uniaxial data can also give totally unrealistic 
predictions for planar extension data. In Figure 9 we plot 
the nominal stress as defined by equation (1) for uniaxial 
stretching, for parameter sets A and B. The two curves 
are very similar. It will now be shown that for planar 
extension the parameter sets A and B give very different 
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Figure 9 Comparison of uniaxial stress-strain curves corresponding 
to data sets A and B of  Table 1 
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Comparison of  stress-strain curves for planar extension 
corresponding to data sets A and B of  Table 1 

predictions. For stretching in the 1-3 plane along the 3 
axis, while applying the lateral restraint )~1 ~--1, the 
through-thickness extension ratio A 2 is given by the 
incompressibility conditions as A2 = A31 • Equations (8) 
and (9) give the nominal drawing stress as 

cry3 = N c ( A  3 - )~3 3) J r - N s ( I 1 ) ( b ' ( A 3 )  - Aa2b'(A~-l)) (11) 

For this deformation, O'~1 = fill and using an equation 
analogous to (9) for the stress ~rll , the nominal lateral 
stress is given by 

Cr~l = Nc(1 - A32) +Ns(I1)(b'(1) - A31b'(A31)) (12) 

Since b ' (1 )=  1, equation (12) implies that the stress 
approaches an asymptotic value of N$ + N ~  at large 
stretches. The parameter r/controls the rate of approach. 
In Figure 10, we plot the axial and transverse nominal 
stress as defined by equations (11) and (12) for both 
parameter sets A and B. The behaviours are grossly 
different, with the transverse stress exceeding the axial 
stress for set B. Thus, the parameter set B, while giving 
realistic uniaxial behaviour, is revealed as defining an 
unrealistic material. 

This emphasizes the need to verify the material 
parameters using non-uniaxial experiments. We cannot 
perform a true planar extension test because our material 
does not deform homogeneously. However, the experi- 
ment in the previous section, in which specimens of the 
geometry illustrated in Figure 3 are stretched using 
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boundary conditions similar to planar extension, can 
provide the required data. In Figure 11 we compare 
experimental and predicted stresses for such an experi- 
ment conducted at a shear rate of 0.01 s -l. Both axial 
and lateral stresses are compared. The predictions are 
from a finite element model of the process, described in 
the next section, made using the material data defined by 
parameter set A of Table 1. The predictions conform 
realistically with the observed stresses. Larger values of ~7 
than the 0.2 value of set A tend to give lateral stress 
predictions which are too high, as would be expected 
from the behaviour of the theory in planar extension 
when parameter set B is used and r? has the value 0.6. 

These findings support the value for 7? of 0.23 originally 
proposed by Ball et al. 2. 

Effectiveness of  model 
This section explores the validity of the model as 

defined by equations (6) and (7) with parameter values 
given as set A in Table 1. As part of the process of 
assessing these material parameters, some degree of 
verification has already been achieved in the previous 
section. In this section we examine the predictions of 
shapes and drawing forces for both uniaxial geometries 
and for the planar extension test. 

For the uniaxial tests on the specimens of circular cross- 
section of Figure la, the force predictions of the finite 
element model of Figure 6 are compared with experiment 
in Figure 12. The experiment, the same as that associated 
with Figure 8, was carried out at 0.7mm s -1 correspond- 
ing to an initial shear rate of 0.01 s -1. The peak in the 
modelled force occurs at a higher extension than that 
observed, as would be expected from the similar behav- 
iour in the stress-strain curve of Figure 8. The other clear 
discrepancy shown in Figure 12 is the abruptness of the 
model load drop after the peak. We believe this to be a 
direct consequence of the elastic nature of the constitu- 
tive law. The load drop corresponds to a sudden 
extension of the elements in the neck and an accompany- 
ing high rate of strain in these elements. Because of the 
viscoelastic nature of the real material, such a high strain 
rate would be accompanied by a high stress, and this has 
the general effect of moderating the speed of neck 
formation and smoothing out changes in load. In 
contrast, the elastic solution can jump freely from one 
stable state to another. 
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Figure 13 Finite element model of  a quarter of  the plane uniaxial 
specimen, with the undeformed model on the left and the deformed 
model on the right 
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Figure 14 Nominal stress-extension curves for the plane uniaxial 
specimen at an initial strain rate of  0.01 s -1 , and for the corresponding 
finite element model 
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Figure 15 Comparison of  measured and modelled surface strains for 
the plane uniaxial specimen 

ABAQUS 

The modelling of the shapes of the cylindrical speci- 
mens is well represented by Figure 7, which concerns the 
shape at a deformation of 55 mm, when the neck has fully 
formed. The quality of the modelling differs significantly 
from this only at the deformation corresponding to the 
abrupt fall in load mentioned above. Here, the transition 
from unnecked to necked material occurs over a much 
shorter distance in the model than in the specimen. This 
corresponds to the unrealistically high strain rate 
mentioned above. 

Uniaxial experiments were also performed on sheet 
dumb-bell specimens of the type illustrated in Figure lb. 
The two-dimensional model of the specimen, consisting 
of four-noded finite elements, is shown in Figure 13 in its 
undeformed and deformed states. The associated nom- 
inal stress-extension curve is shown in Figure 14, using 
the parameter set A for the finite element analysis and 
carrying out the experiment at a constant testing speed 
corresponding to an initial shear strain rate of 0.01 s -l . 
The oscillations in the predicted nominal stress are the 
result of the fall in load of each row of elements as it goes 
through the neck. For this model the extensions of 
elements in the same horizontal row are very similar to 
one another, so the load drop occurs at the same instant 

for the whole row, affecting the total load in the 
specimen. For the cylindrical specimen of Figure 12, 
the effect is masked as extension varies more between 
elements in the same row. The deformation field of the 
experiment, as obtained using image analysis, is com- 
pared with the finite element prediction in Figure 15 in 
terms of axial draw ratio along the specimen axis. The 
change in the extension ratio is again more abrupt in the 
model than in the specimen, more markedly so than for 
the cylindrical specimen of Figure 7. 

For the planar extension experiments, the finite 
element model is shown in the undeformed and deformed 
states in Figure 16. The axial and lateral drawing forces 
have been compared in Figure 11. In the model, necks 
develop between the separating grips and spread into the 
specimen in essentially the same manner as observed 
experimentally. A more quantitative comparison, of 
axial draw ratio, is made using contour plots in Figure 
17. The experimental plot is derived from measurements 
on the mesh printed on the specimen (shown in Figure 4 ) 
and gives slightly less spatial resolution than is available 
in some regions of the finite element model. This means 
that small regions of high strain predicted by the model 
may not be observed experimentally because they have in 
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Contour plots of axial extension ratio Az for the experimental results (left) and the finite element model of Figure 16 (right) 

effect been averaged out. The overall agreement is good, 
with the only notable discrepancies being such high 
strain regions. 

CONCLUSIONS 

There has been other work on the quantitative modelling 
of necking polymers, but in contexts different from the 
present one of semi-crystalline polymers at high temper- 
atures. Boyce et al. 6 and Wu and van der Geissen 7 have 
modelled the necking of glassy polymers at room 
temperature. In both these cases, the mechanism of 
necking is assumed to reside in rate-dependent plasticity. 
As argued previously 1, the rate dependence of poly- 
propylene is too weak at 150°C to be associated with the 
mechanism of necking. However, the rate dependence 
strengthens as the test temperature is lowered, and so we 
would expect it to become strong enough to cause 
necking, or at least strain softening, at sufficiently low 
temperatures. This suggests that there are, in general, 
two strain softening processes in polypropylene. This is 
not unreasonable, given the observed double yield points 
at room temperature in polyethylene 8'9. 

The modified Ball et al. model has been shown to 
provide an adequate representation of the three different 
deformation modes studied. The neglect of rate depen- 
dence leads in all cases to an unrealistically sudden drop 
in load after the formation of the neck. The other 
discrepancy--the prediction of the onset of necking at 
too high an extension--is also an inherent property of 
the model. Some preliminary studies have shown that the 
introduction of rate dependence into the present model 
(by making Ns a function of shear strain rate) has the 
effect of lessening the abruptness of the load drop after 
necking, and also of creating a smoother and more 
realistic neck shape. As it stands, the present elastic 
model can be viewed as a useful first-order theory, for 
which the introduction of rate dependence would 
provide further refinement and predictions of greater 
accuracy. Such a model is to be the subject of a future 
paper. 

The principal practical advantage of the elastic model 
is that it requires fewer computing resources than 
alternative approaches. One such alternative is the 
elastic-plastic constitutive model. For a quantitative 
comparison, a tensile specimen has been modelled with a 
plane stress ABAQUS analysis of 370 four-noded 
elements, using both the present modified Ball et al. 
model and an elastic-piecewise linear plastic model as 
the constitutive law, with parameters such as to give 
approximately the same uniaxial stress-strain curves. 
Running on a Sun SPARC-20 workstation, the total 
computing times required to achieve the same overall 
deformation, corresponding to the onset of necking, 
were 124 s for the elastic-plastic model and 47 s for the 
elastic model. A complete description of the material 
would require a non-linear viscoelastic model, which can 
be expected to be more computationally intensive than 
the elastic-plastic approach. 
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